Cost Savings from Applying Physics-of-Failure Analysis during System Development

Systems Engineering Conference

Tampa, FL 22-24 October 2002

Thomas Stadterman
US Army Materiel Systems Analysis Activity

Outline

- > Physics-of-Failure Overview
- > Electronics applications
- > Mechanical applications
- Physics-of-Failure approach to prognostics
- > Summary

Physics of Failure

Stress (e.g., vibration) is propagated from system level to failure site

- **≻**Science-based approach to reliability
 - -Model the root causes of failure (e.g., fatigue, fracture, corrosion & wear)
- > Failure models & CAD tools developed
 - By industry/academia/government
 - To address specific materials, sites, & architectures

Benefits

- •Design-in reliability
- •Eliminate failures prior to test
- •Better chance of passing test
- •Increased fielded reliability
- Improved prognostics
- •Decreased O&S costs

The University of Maryland's CALCE Electronic Products & Systems Center Members

3COM ABB

Aerospatiale (France)

Avici System

Boeing

British Aerospace

Celestica Ciena

CNES

Corvis Corp.

Daewoo (South Korea)

DaimlerChrysler

Delphi Delco Electronics

dmc2 Elec. Components

Eaton Eldec

Emerson

Energy Controls Inter

Ericson Radio Systems

General Dynamics Info Sys

General Motors

Honeywell

Institute of Energy Tech

International Rectifier

Israeli Ministry Of Defence

King Electronics

Lab. for Physical Science

LeCroy Lucent

Lockheed-Martin

Microsoft Motorola

Nokia Research Center

Nortel (Canada)

Northrop Grumman

NSA (DoD)

Nu Thena Systems

Orbital Sciences

Philips (Netherlands)

Photo Circuits

Qualmark

Raytheon Systems Co.

RD Instrumentation

Rockwell Collins Sonix

S.C. Johnson Wax

Sandia National Labs.

Schlumberger

Siemens

Smith Industries (UK)

Sonix

Sun Microsystems

Tatung (Taiwan)

Teradyne

Textron Systems

Thompson Computer Elect.

Triquint

TRW

U.K. DERA

U.K. Ministry of Defence

U.S. Air Force WPAFB

U.S. Army AMSAA

U.S. Naval Surface Warfare

Visteon Automotive Controls

Partnership of Gov't, Industry, & Academia

Physics of Failure Software Tools

Solid Modeling Tools

Dynamic Simulation Tools

Finite Element Modeling Tools

Fatigue Analysis Tools

Thermal Fluid Analysis Tools

UMD CalcePWA Software Tool

Architecture & environment

Toolbox

Reports and documentation

Failure assessment & sensitivity analysis

Thermal analysis

Electronics Physics of Failure Success Stories

Radar Ground Station \$1.2M Saved

- Analysis showed commercial circuit card OK
- AMSAA funded

Tracked Vehicle

- Identified potential thermal & vibration problems
- PM funded

Increased Reliability

Tri-Service Radio

\$27M Cost Avoidance

- Identified weak link in design & verified
- ManTech funded

Design Changes

Recommended

- Circuit card & box-level analyses
- Potential technology expansion
- PM funded

Army Helicopter

\$50M

Savings

- Air Force analysis showed commercial ICs OK
- AF ManTech funded

Missile System

- PoF analysis on Plastic Ball **Grid Array**
- PM funded

Evaluate New Technology

Ground Station Physics of Failure Analysis

Objective: Determine whether Commercial Processor circuit card could be used instead of Ruggedized circuit card in the Ground Station

Approach: Performed vibrational, thermal and solder-joint fatigue analyses using CalcePWA software

Results: Commercial circuit card Fatigue Life 11 Years versus 23 Years for Ruggedized, which was acceptable (Cost Savings - \$12,000/Card)

Electronics Ground Station

Tri-Service Radio Physics of Failure Analysis

Objectives:

- Validate CalcePWA software through accelerated life testing
- Assess reliability of the module in a military environment
- Improve reliability of the module

Analysis Results:

- 20 pin Leadless Chip Carrier was weak in design
- Estimated time-to-failure during accelerated life test cycle

Aluminum Backplane

• Estimated life under operating conditions - 6.5 years

Aluminum Backplane

Board 2

Board 3

Board 1

Testing Results:

Developed Logistics Case Study

• 5,000 units fielded - 20 years field life

AMSA

Operating & Support Cos

Avoidance

\$27,000,000

Failures occurred as predicted

Helicopter & Aircraft Physics of Failure Analysis

- U.S. Air Force Project
- Aircraft and helicopter had common circuit cards
- CalcePWA software used to determine if commercial Integrated Circuits could be used
- Analysis show commercial Integrated Circuits could be used without degrading reliability

Helicopter (Similar Savings for Aircraft)

- Savings: Circuit Card #1: \$18,501/card Circuit Card #2: \$20,228/card
- For a buy of 1292, total savings = \$50M
- Also a 15% weight reduction per card

Substantial savings for acquisition only....would be greater if Operating and Support Costs were included

Recent Electronics PoF Analyses

Heater/Air Conditioner Unit

- PoF analysis on 2 circuit cards
- Thermal testing (initiated by AMSAA) on the unit
- Potential thermal problems & fixes identified
- Potential analysis for the unit

IR Image of CCA

Missile

- PoF Analysis on new packages (Ball & Column Grid Array)
- Analysis and accelerated life testing suggested that packages could be used for the missile

Accelerated Testing Results

	Package 1 Median Time to Failure (cycles)	Package 2 Time to 1st Failure (cycles)
PoF Estimate	~2000-7000	~2500-3500
Actual	5389	6239 (Better than Anticipated)

AMSAA

Oct 02

Mechanical Structures - Fatigue Analysis Software

Examples: nCode, LMS, University of Iowa DRAW

- Edits & characterizes strain time histories
- Rainflow counting & mean stress correction of strain cycles
- Estimates plastic strain based on elastic stress or strain calculations
- Calculates fatigue life based on measured (strain gauge) or FEA strain time histories

Fatigue Applied to Bridge Durability

Army Bridge

- User's 20-year durability requirement = 46,466 crossings
- Test Requirement ~ 3.8 x 46,466
- Testing to requirement is unaffordable

PoF fatigue analysis tools used to:

- Calculate fatigue life based on measured data inputs
- Compare fatigue equivalence (i.e. not stress level equivalence) for simulated vs actual crossing

PoF Analysis Conclusion:

Increase Simulation load by 4% to achieve fatigue damage parity

Mechanical PoF: Army Trailer System

Objectives

- **✓** Focus on Fatigue
- ✓ Develop process for dynamic fatigue analysis
- **✓** Replicate drawbar failure

- ✓ Validate dynamics loading from system level to component level
- ✓ Use lab/field test data to validate loading & reliability predictions

Army Mechanical PoF Team: AMSAA, ATC, DTC, TARDEC, AEC, University of Iowa, University of Tennessee

DADS

Software Tool Interactions for Dynamic Fatigue Analysis

3-D Solid Model in Pro/Engineer

CAD modeling was performed within Pro/Engineer

- > Physical measurements and mass/inertia properties used to validate model
- ➤ Material properties were assigned to each part
- Used to develop the bodies defined in dynamic analysis
- **▶** Used to develop Finite Element Model

Finite Element Analysis (FEA) Model

- Calculates vibration modes
- Calculates stress and strain
- Input into fatigue analysis
- ➤ Modal results experimentally validated

Mode 1

Mode 2

Excellence in Analysis

Tire, Axle, & Shock Measurements

- Tire
 - **➤** Natural frequency and damping (non-rolling)
 - **►** Natural frequency (rolling)
- Axle
 - >Spring rate obtained from previous modeling effort at RTTC
 - **➤ Damping determined from drop test of trailer**
- Shock Absorbers
 - **▶** Performed by Penske Racing Shocks, Reading, PA
 - > Force-velocity curve determined using shock dynamometer

Tire Transfer Function 17 psi Inflation Pressure ATC Belgian Block Course

Flexible-Body Dynamic Analysis Model

Dynamic Analysis used DADS

- Multi-body approach
- Use input from solid model
 & FEA model
- Experimental data used for model inputs of tire, shock absorbers & suspension
- Determines force/ acceleration time history at all locations on trailer

Fatigue Results

Results consistent with failure data on Perryman No. 3 course

Benefits:

- **Early identification of failure modes**
- **≻**Better test planning and design
- >Improved maintenance procedures

PoF-Based Prognostics Life-Consumption Monitoring Demonstration

Determine terrain categories and speeds

- Selected 4 terrain categories from ATC courses: 3-mile straight course, Perryman Cross Country (CC) #1, Perryman CC #2, Perryman CC #3
- Determined average speed for each terrain (50, 35, 25, 15 mph, respectively)
- Terrain and speed equated to vibration severity levels called Smooth Road, Rough Road, Off Road, and Cross-County

Determine vehicles vibration severity in real time

• Terrain Sensor System/Vibration Severity Sensor (TSS/VSS) used to determine vehicle vibration severity levels in real time

Vehicle LCM Algorithm

• PoF models simulated trailer life for each terrain/speed (vibration severity)

Smooth road (SR) life = 286128000 seconds

Rough road (RR) life = 322354 seconds

Off road (OR) life = 340560 seconds

Cross country (CC) life = 46800 seconds

• Percent damage per vibration severity level per unit time determined

Simple algorithm could be expanded for greater refinement in terrain types and vehicle speeds

Other Prognostics Efforts

➤ Working with The Technical Cooperation Program (TTCP) members (UK, Canada, and Australia) to identify and develop techniques for incorporating Physics-of-Failure (stresshistory) based prognostics into military platforms.

- > Conducting FMTV automatic data collection demonstration
 - Collect data from system bus & sensors
 - Working w/ AMSAA Sample Data Collection
 - Working w/ ATC (Volvo truck data collection)
 - Examples of data to be collected: Faults codes, vehicle speed, vehicle braking, vibration, shock
 - Used for maintenance, prognostics, PoF analyse

Summary

- ➤ Electronics PoF has shown high return on investment and has resulted in significant reliability improvement
 - Design reliability in up-front
 - Determine when can use COTS
 - Commercial best practices
- > Mechanical PoF demonstrations very successful
 - The technology enables early assessment of potential fatigue failure problems during the vehicle design and development process
 - Fatigue analysis from nCode used with measured strain data
 - Approach critical for prognostics and life consumption monitoring
- > PoF-Based Prognostics is very promising
 - Provides longer lead times than precursor prognostics
 - Demonstration system developed for trailer fatigue
 - International TTCP project is ongoing